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This paper deals with a negative result concerning a pointwise comparison of two
quite general sequences of linear operators on the space of continuous functions on
the torus or a segment � 1997 Academic Press

Let E be the torus or a nongenerate segment of R. + denotes the
Lebesque measure on E and & }& denotes the uniform norm on the space of
continuous functions on E. Shapiro [6, p. 120] set up a problem of
comparative pointwise behaviour of two sequences of linear operators on
C(E). This question was studied in many works. For different pairs [An]
and [Bn] of sequences of operators it was shown that the relationship

|Bn( f )& f |=O( |An( f )& f | )

may fail almost everywhere (see [1�4]). Below we prove that this occurs
for quite general sequences of operators.

Theorem. Let [An] and [Bn] be sequences of finite-dimensional linear
bounded operators from the space C(E) to itself and let [In] be a non-
decreasing sequence of positive numbers. Suppose also that An( f ) � f
uniformly for any f belonging to a dense subset of C(E) and for some
sequence of functions hn # C(E) we have

lim inf
n � �

+[x # E : An(hn ; x)=Bn(hn ; x)]=0.
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Then there exists a function f # C(E) and a sequence [nk] such that

lim
k � �

Ink
|Ank

( f )& f |�|Bnk
( f )& f |=0

almost everywhere.

The theorem contains some previous results. For instance, if one of the
operators An , Bn is the trigonometric convolution operator and another
operator is its discrete analogue, In=1; then the assertion follows from
[2, 3]. However, the analogous result, obtained in [1] for the Abel�
Poussin means An , the Feje� r means Bn , and In=o(- ln n), is not covered
by our theorem, because An are not finite-dimensional operators.

It might also be of interest to state sufficient conditions for the stronger
conditions that there exists a continuous function f such that

lim
n � �

In |An( f )& f |�|Bn( f )& f |=0

almost everywhere.
To prove the theorem we need two lemmas.

Lemma 1. Let =>0, L be a finite-dimensional linear space, and let C be
a linear operator from C(E) to L. Then there exists a function h # C(E) such
that Ch=0, &h&�1�=, and +[x # E : h(x){1]<=+E.

Proof. The assertion is trivial for =>1 since one can take h=0. Let
=�1. Denote n=[1�=] and m=dim L; then =>1�(n+1) and we can
choose $>0 and positive integer M such that

2$<=&
1

n+1
(1)

and

m+1
M

<$. (2)

We divide E into M equal segments 2i . Let hi (i=1, ..., M) be a
continuous function supported on 2i such that

&hi&=1 (3)

and

+[x # 2i : hi (x){1]�$+2i . (4)
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We consider the cube K=[&n, 1]M in the M-dimensional space Y=RM,
Denote

C$(u)=\ :
M

i=1

ui , C \ :
M

i=1

uihi++ # R�L

(u=(u1 , ..., uM) # Y), Z=Ker C$.

Then Z is the subspace of Y and

codim Z=dim IC$�1+dim L=m+1.

By the Krein�Milman theorem [5, Chap. 1, Sect. 4] K & Z contains an
extremal point u=(u1 , ..., uM). We assert that all coordinates of u but at
most m+1 exceptions are equal 1 or &n. Actually, in the opposite case u
is an interior point of some face F of K, dim F>m+1. Then F & Z con-
tains a segment of a line passing through the point u and so u is not an
extremal point that does not agree with our supposition. Since �M

i=1 ui=0
the number of coordinates ui=&n does not exceed M�(n+1). Therefore,

*[i : ui {1]= *[i : ui=&n]+ *[i : &n<ui<1]�
M

n+1
+m+1. (5)

Denote h=�M
i=1 ui hi and verify that h satisfies the requirements of the

lemma. By definition of Z we have Ch=0. Further, since the supports of
functions hi are mutually nonoverlapping segments, &h&=maxi &uihi &=
maxi |ui | by (3). Since u # K we get maxi |ui |�n�1�=. Finally,

+[x # E : h(x){1]� :
ui{1

+2i+ :
M

i=1

+[x # 2i : hi (x){1]

and using consequently (5), (4), (2), and (1) we have

+[x # E : h(x){1]�\ M
n+1

+m+1+ +E
M

+$ :
M

i=1

+2i

=\ 1
n+1

+
m+1

M + +E+$+E

�\ 1
n+1

+2$+ +E<=+E

as required. Lemma 1 is proved.
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Lemma 2. Under the assumptions of the theorem for any f # C(E),
N # N, and =>0 there exist g # C(E), n>N, and F/E such that
& f & g&�=, +F�(1&=) +E, An g(x)= g(x) for x # F, and infx # F | g(x)&
Bn g(x)|>0.

Proof. We consider that =<1. By the assumptions of the theorem we
can find f0 # C(E) and n>N satisfying the conditions

& f & f0&�=2�8, (6)

&An( f0)& f0&�=2�8, (7)

and

_hn # C(E) : +(G)<=+E�2, (8)

where G=[x # E : An(hn ; x)=Bn(hn ; x)]. For almost all * we have

+[x # E"G : An( f0+*hn ; x)=Bn( f0+*hn ; x)]=0. (9)

Therefore we can choose * satisfying (9) small enough so that &*hn&�=2�8
and &An(*hn)&�=2�8. Denote f1= f0+*hn and f2=An( f1)& f1 . We have

& f & f1&�& f & f0 &+& f0& f1 &�=2�4, (10)

& f2&�&An( f1)&An( f0)&+&An( f0)& f0 &+& f0& f1 &�3=2�8 (11)

by (6) and (7) and

+[x # E : An( f1 ; x)=Bn( f1 ; x)]<=+E�2 (12)

by (8) and (9). Let us define the finite-dimensional linear L=Im An �
Im Bn and the linear operator C : C(E) � L : Ch=An( f2h)�Bn( f2 h).
Applying Lemma 1 (with =�2 instead of =) we obtain the existence of a
corresponding function h. Let g= f1+ f2h and F $=[x # E : h(x)=1]; then
we have:

(1) & f & g&�& f & f1&+& f1& g&�& f & f1&+2 & f2&�= and by (10)
and (11) & f & g&�=2�4+3=�4<=;

(2) An g(x)=An f1(x)= f1(x)+ f2(x)= g(x) for h(x)=1, i.e., x # F $;

(3) +F $>(1&=�2) +E;

(4) An g=An f1 , Bn g=Bn f1 , and by (12) +[x # E : An(g; x)=
Bn(g; x)]<=�2+E.
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Thus, we get

+[x # E : g(x)=An(g; x){Bn(g; x)]

�+F $&+[x # E : An(g; x)=Bn(g; x)]>(1&=) +E,

and a required set F can be chosen. This completes the proof of Lemma 2.

Now we are ready to prove the theorem. Using Lemma 2 one can easily
construct by induction sequences of positive numbers =k , positive integers nk ,
sets Fk /E, and functions fk # C(E) satisfying for k=1, 2, ..., the following
conditions:

+Fk�(1&=k) +E, (13)

Ank
fk(x)= fk(x) for x # Fk , (14)

$k= inf
x # Fk

| fk(x)&Bnk
fk(x)|>0, (15)

& fk& fk+1&�=k+1 , (16)

nk+1>nk , (17)

=k+1<=k�2, (18)

2=k+1<
$k

kInk
+1+kInk

&Ank
&+&Bnk

&
. (19)

It follows from (18) that

:
�

k=1

=k<�. (20)

Therefore, by (16), the sequence [ fk] uniformly converges to a function
f # C(E) and also

& f & fk&<2=k+1 . (21)

Denote

F= .
�

l=1

,
�

k=l

Fk ;

then from (20) we get +(E"F )=0. For almost all points x # E we have x # F.
Then x # Fk for sufficiently large k and we can use (21), (14), and (15) for
estimates of deviations Ank

f (x)&f (x) and Bnk
f (x)& f (x). We find

|Ank
f (x)& f (x)|�2(1+&Ank

&) =k+1
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and

|Bnk
f (x)& f (x)|�$k&2(1+&Bnk

&) =k+1.

From the last two inequalities and (19) we obtain

kInk
|Ank

f (x)& f (x)|�|Bnk
f (x)& f (x)|.

Thus,

lim
k � �

Ink
|Ank

f (x)& f (x)|�|Bnk
f (x)& f (x)|=0

for x # F, and the theorem is proved.
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