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This paper deals with a negative result concerning a pointwise comparison of two
quite general sequences of linear operators on the space of continuous functions on
the torus or a segment  © 1997 Academic Press

Let E be the torus or a nongenerate segment of R. x denotes the
Lebesque measure on £ and | -|| denotes the uniform norm on the space of
continuous functions on E. Shapiro [6, p. 120] set up a problem of
comparative pointwise behaviour of two sequences of linear operators on
C(E). This question was studied in many works. For different pairs {4,}
and {B,} of sequences of operators it was shown that the relationship

|B,(f)=f1=0(4,(f)—=f1)

may fail almost everywhere (see [ 1-4]). Below we prove that this occurs
for quite general sequences of operators.

THEOREM. Let {A,} and {B,} be sequences of finite-dimensional linear
bounded operators from the space C(E) to itself and let {I,} be a non-
decreasing sequence of positive numbers. Suppose also that A,(f)- f
uniformly for any f belonging to a dense subset of C(E) and for some
sequence of functions h, € C(E) we have

lim inf u{xeE: A,(h,;x)=B,(h,;x)}=0.

n— oo
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Then there exists a function f€ C(E) and a sequence {n,} such that

lim 1, |4, (f)—=f/|B, (f)—f]1=0

k— o

almost everywhere.

The theorem contains some previous results. For instance, if one of the
operators A,, B, is the trigonometric convolution operator and another
operator is its discrete analogue, I, =1; then the assertion follows from
[2,3]. However, the analogous result, obtained in [1] for the Abel-
Poussin means 4,,, the Fejér means B, and [, = o(\/ﬁ n), is not covered
by our theorem, because A4, are not finite-dimensional operators.

It might also be of interest to state sufficient conditions for the stronger

conditions that there exists a continuous function f such that

n— oo

almost everywhere.
To prove the theorem we need two lemmas.

LEmMA 1. Let ¢>0, L be a finite-dimensional linear space, and let C be
a linear operator from C(E) to L. Then lhere exists a function he C(E) such
that Ch=0, |h| <1/e, and u{x € E: h(x)# 1} <euF.

Proof. The assertion is trivial for ¢>1 since one can take 4 =0. Let
e<1. Denote n=[1/¢] and m=dim L; then ¢>1/(n+1) and we can
choose J >0 and positive integer M such that

1
25 <e— !
=¢ n+1 1)
and
m+l_s. 2)
M

We divide E into M equal segments A,. Let A; (i=1,..,M) be a
continuous function supported on 4, such that

[A:]l=1 (3)
and

u{xed;: hy(x)#1} <dud,. (4)
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We consider the cube K=[ —n, 1] in the M-dimensional space Y =R,
Denote

0=(% u.c( L uh))eror

i=1 i=1

(u=(uy,...,uy)eY), Z=KerC'.
Then Z is the subspace of Y and
codim Z=dim 3C'<1+dim L=m+ 1.

By the Krein—Milman theorem [5, Chap. 1, Sect.4] KN Z contains an
extremal point u=(u,, ..., u,,). We assert that all coordinates of u but at
most m + 1 exceptions are equal 1 or —n. Actually, in the opposite case u
is an interior point of some face F of K, dim F>m+ 1. Then Fn Z con-
tains a segment of a line passing through the point # and so u is not an
extremal point that does not agree with our supposition. Since >  u,=0
the number of coordinates ;= —n does not exceed M/(n+ 1). Therefore,

M
itu, A1y =7{itu,=—n} + #{i: —n<u;<1} <n—+l+m+l. (5)

Denote 1=, u;h; and verify that & satisfies the requirements of the
lemma. By definition of Z we have Ch=0. Further, since the supports of
functions /; are mutually nonoverlapping segments, || =max, ||uh;| =
max; |u;| by (3). Since u € K we get max; |u,;| <n<1/e. Finally,

M
WxeEh(x)#£1} < Y ud;+ Y p{xed; h(x)#1}
u;#1 i=1

and using consequently (5), (4), (2), and (1) we have

M

u{xeE:h(x)#1}

S
+

UE
1)=—4+0 A4,
+m+ >M+ ,;ﬂ

<
(L
S

as required. Lemma 1 is proved.
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LEMMA 2. Under the assumptions of the theorem for any fe C(E),
NeN, and ¢>0 there exist ge C(E), n>N, and F< E such that
If—gl<e uF=(1—¢)uk, 4,8(x)=g(x) for xeF, and inf,_.|g(x)—
B, g(x)|>0.

Proof. We consider that ¢ <1. By the assumptions of the theorem we
can find f, € C(F) and n> N satisfying the conditions

ILf = fol <e&*/8, (6)
14,(fo) = foll <&°/8, (7)

and
3h, € C(E): u(G) < euE/2, (8)

where G={x€eE: A4,(h,; x)=B,(h,; x)}. For almost all 1 we have
u{xe E\G: A,(fo+ Ah,; x)=B,(fo+ Ah,; x)} =0. 9)

Therefore we can choose A satisfying (9) small enough so that ||/, | <&*/8
and | 4,(4h,)|| <&*/8. Denote f, = f,+ Ah, and f>=A,(f;) — f1. We have

If =A< If=foll + 1 fo—fill <e*/4, (10)
11 < 14,00 = Aol + 1Afo) = foll + 1 fo— frll <3e%/8  (11)

by (6) and (7) and
P{XEE: A,(f1; %)= B,(f: X)} <euE]2 (12)

by (8) and (9). Let us define the finite-dimensional linear L=1Im 4, &
Im B, and the linear operator C: C(E)— L: Ch=A,(f,h)® B,(f>h).
Applying Lemma 1 (with ¢/2 instead of ¢) we obtain the existence of a
corresponding function A. Let g= f, + f>h and F' = {xe E: h(x)=1}; then
we have:

() f=gl<lf=Al+1fi—gl<lf=fill+2]/:ll/c and by (10)
and (11) || f— gl <&?/4+3¢/d <¢;

(2) A, g(x)=A4, fi(x)=fi(x)+ fo(x) = g(x) for h(x) =1, ie., xe F';

(3) uF'>(1—¢/2) pk;

(4) A,g=A,f,.B,g=B,f, and by (12) u{xeE: A,(gx)=
B,(g;x)} <é&/2uE.
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Thus, we get
p{xeE:g(x)=4,(g x)#B,(g; x)}
>uF' —p{x€E: A,(g x)=B,(g x)} >(1—¢) uE,
and a required set F can be chosen. This completes the proof of Lemma 2.

Now we are ready to prove the theorem. Using Lemma 2 one can easily
construct by induction sequences of positive numbers ¢, , positive integers n,.,
sets F, < E, and functions f; € C(E) satisfying for k=1, 2, ..., the following
conditions:

puF = (1 —&) LE, (13)
A, [illx)=filx)  for xeF,, (14)
Se= inf /lx) = By, fi(x)] >0, (1)
[ fe=Ser1l <eérins (16)
Ny 1 >Ny, (17)
1 <&r/2, (18)
0
2,4 ud (19)

< .
kil + 14kl A, |+ B,

It follows from (18) that

Y e <. (20)
k=1

Therefore, by (16), the sequence {f,} uniformly converges to a function
feC(E) and also

If = fell < 2ep 41 (21)

Denote
F= () Fi;
I=1 k=1

then from (20) we get u(E\F) = 0. For almost all points x € E we have x € F.
Then x € F, for sufficiently large k and we can use (21), (14), and (15) for
estimates of deviations 4,, f(x)—f(x) and B,, f(x)— f(x). We find

A, fx) = ) <201+ A, 1) ey
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and
|B,,, f(x) = f(x)| 20, = 2(1 + [|B,, II) &x 4 1-
From the last two inequalities and (19) we obtain

kI, 14, f(x)—f(x)<[B,, f(x)—f(x)].
Thus,

lim 1, 14, f(x) = f(x)l/|B,, f(x) = f(x)| =0

for x € F, and the theorem is proved.
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