Divergence Almost Everywhere of a Pointwise Comparison of Two Sequences of Linear Operators

S. V. Konyagin*
Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia E-mail: kan@nw.math.msu.su
Communicated by Rolf J. Nessel

Received July 5, 1995; accepted in revised form August 2, 1996

Abstract

This paper deals with a negative result concerning a pointwise comparison of two quite general sequences of linear operators on the space of continuous functions on the torus or a segment © 1997 Academic Press

Let E be the torus or a nongenerate segment of $\mathbb{R} . \mu$ denotes the Lebesque measure on E and $\|\cdot\|$ denotes the uniform norm on the space of continuous functions on E. Shapiro [6, p. 120] set up a problem of comparative pointwise behaviour of two sequences of linear operators on $C(E)$. This question was studied in many works. For different pairs $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ of sequences of operators it was shown that the relationship

$$
\left|B_{n}(f)-f\right|=O\left(\left|A_{n}(f)-f\right|\right)
$$

may fail almost everywhere (see [1-4]). Below we prove that this occurs for quite general sequences of operators.

Theorem. Let $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ be sequences of finite-dimensional linear bounded operators from the space $C(E)$ to itself and let $\left\{I_{n}\right\}$ be a nondecreasing sequence of positive numbers. Suppose also that $A_{n}(f) \rightarrow f$ uniformly for any f belonging to a dense subset of $C(E)$ and for some sequence of functions $h_{n} \in C(E)$ we have

$$
\lim \inf _{n \rightarrow \infty} \mu\left\{x \in E: A_{n}\left(h_{n} ; x\right)=B_{n}\left(h_{n} ; x\right)\right\}=0
$$

[^0]Then there exists a function $f \in C(E)$ and a sequence $\left\{n_{k}\right\}$ such that

$$
\lim _{k \rightarrow \infty} I_{n_{k}}\left|A_{n_{k}}(f)-f\right| /\left|B_{n_{k}}(f)-f\right|=0
$$

almost everywhere.
The theorem contains some previous results. For instance, if one of the operators A_{n}, B_{n} is the trigonometric convolution operator and another operator is its discrete analogue, $I_{n}=1$; then the assertion follows from [2,3]. However, the analogous result, obtained in [1] for the AbelPoussin means A_{n}, the Fejér means B_{n}, and $I_{n}=o(\sqrt{\ln } n)$, is not covered by our theorem, because A_{n} are not finite-dimensional operators.

It might also be of interest to state sufficient conditions for the stronger conditions that there exists a continuous function f such that

$$
\lim _{n \rightarrow \infty} I_{n}\left|A_{n}(f)-f\right| /\left|B_{n}(f)-f\right|=0
$$

almost everywhere.
To prove the theorem we need two lemmas.

Lemma 1. Let $\varepsilon>0$, L be a finite-dimensional linear space, and let C be a linear operator from $C(E)$ to L. Then there exists a function $h \in C(E)$ such that $C h=0,\|h\| \leqslant 1 / \varepsilon$, and $\mu\{x \in E: h(x) \neq 1\}<\varepsilon \mu E$.

Proof. The assertion is trivial for $\varepsilon>1$ since one can take $h=0$. Let $\varepsilon \leqslant 1$. Denote $n=[1 / \varepsilon]$ and $m=\operatorname{dim} L$; then $\varepsilon>1 /(n+1)$ and we can choose $\delta>0$ and positive integer M such that

$$
\begin{equation*}
2 \delta<\varepsilon-\frac{1}{n+1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{m+1}{M}<\delta . \tag{2}
\end{equation*}
$$

We divide E into M equal segments Δ_{i}. Let $h_{i}(i=1, \ldots, M)$ be a continuous function supported on Δ_{i} such that

$$
\begin{equation*}
\left\|h_{i}\right\|=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left\{x \in \Delta_{i}: h_{i}(x) \neq 1\right\} \leqslant \delta \mu \Delta_{i} . \tag{4}
\end{equation*}
$$

We consider the cube $K=[-n, 1]^{M}$ in the M-dimensional space $Y=\mathbb{R}^{M}$, Denote

$$
\begin{aligned}
& C^{\prime}(u)=\left(\sum_{i=1}^{M} u_{i}, C\left(\sum_{i=1}^{M} u_{i} h_{i}\right)\right) \in \mathbb{R} \oplus L \\
& \quad\left(u=\left(u_{1}, \ldots, u_{M}\right) \in Y\right), \quad Z=\operatorname{Ker} C^{\prime} .
\end{aligned}
$$

Then Z is the subspace of Y and

$$
\operatorname{codim} Z=\operatorname{dim} \mathfrak{J} C^{\prime} \leqslant 1+\operatorname{dim} L=m+1 .
$$

By the Krein-Milman theorem [5, Chap. 1, Sect. 4] $K \cap Z$ contains an extremal point $u=\left(u_{1}, \ldots, u_{M}\right)$. We assert that all coordinates of u but at most $m+1$ exceptions are equal 1 or $-n$. Actually, in the opposite case u is an interior point of some face F of $K, \operatorname{dim} F>m+1$. Then $F \cap Z$ contains a segment of a line passing through the point u and so u is not an extremal point that does not agree with our supposition. Since $\sum_{i=1}^{M} u_{i}=0$ the number of coordinates $u_{i}=-n$ does not exceed $M /(n+1)$. Therefore,

$$
\begin{equation*}
\#\left\{i: u_{i} \neq 1\right\}=\#\left\{i: u_{i}=-n\right\}+{ }^{\#}\left\{i:-n<u_{i}<1\right\} \leqslant \frac{M}{n+1}+m+1 \text {. } \tag{5}
\end{equation*}
$$

Denote $h=\sum_{i=1}^{M} u_{i} h_{i}$ and verify that h satisfies the requirements of the lemma. By definition of Z we have $C h=0$. Further, since the supports of functions h_{i} are mutually nonoverlapping segments, $\|h\|=\max _{i}\left\|u_{i} h_{i}\right\|=$ $\max _{i}\left|u_{i}\right|$ by (3). Since $u \in K$ we get $\max _{i}\left|u_{i}\right| \leqslant n \leqslant 1 / \varepsilon$. Finally,

$$
\mu\{x \in E: h(x) \neq 1\} \leqslant \sum_{u_{i} \neq 1} \mu \Delta_{i}+\sum_{i=1}^{M} \mu\left\{x \in \Delta_{i}: h_{i}(x) \neq 1\right\}
$$

and using consequently (5), (4), (2), and (1) we have

$$
\begin{aligned}
\mu\{x \in E: h(x) \neq 1\} & \leqslant\left(\frac{M}{n+1}+m+1\right) \frac{\mu E}{M}+\delta \sum_{i=1}^{M} \mu \Delta_{i} \\
& =\left(\frac{1}{n+1}+\frac{m+1}{M}\right) \mu E+\delta \mu E \\
& \leqslant\left(\frac{1}{n+1}+2 \delta\right) \mu E<\varepsilon \mu E
\end{aligned}
$$

as required. Lemma 1 is proved.

Lemma 2. Under the assumptions of the theorem for any $f \in C(E)$, $N \in \mathbb{N}$, and $\varepsilon>0$ there exist $g \in C(E), n>N$, and $F \subset E$ such that $\|f-g\| \leqslant \varepsilon, \mu F \geqslant(1-\varepsilon) \mu E, A_{n} g(x)=g(x)$ for $x \in F$, and $\inf _{x \in F} \mid g(x)-$ $B_{n} g(x) \mid>0$.

Proof. We consider that $\varepsilon<1$. By the assumptions of the theorem we can find $f_{0} \in C(E)$ and $n>N$ satisfying the conditions

$$
\begin{array}{r}
\left\|f-f_{0}\right\| \leqslant \varepsilon^{2} / 8, \\
\left\|A_{n}\left(f_{0}\right)-f_{0}\right\| \leqslant \varepsilon^{2} / 8 \tag{7}
\end{array}
$$

and

$$
\begin{equation*}
\exists h_{n} \in C(E): \mu(G)<\varepsilon \mu E / 2, \tag{8}
\end{equation*}
$$

where $G=\left\{x \in E: A_{n}\left(h_{n} ; x\right)=B_{n}\left(h_{n} ; x\right)\right\}$. For almost all λ we have

$$
\begin{equation*}
\mu\left\{x \in E \backslash G: A_{n}\left(f_{0}+\lambda h_{n} ; x\right)=B_{n}\left(f_{0}+\lambda h_{n} ; x\right)\right\}=0 . \tag{9}
\end{equation*}
$$

Therefore we can choose λ satisfying (9) small enough so that $\left\|\lambda h_{n}\right\| \leqslant \varepsilon^{2} / 8$ and $\left\|A_{n}\left(\lambda h_{n}\right)\right\| \leqslant \varepsilon^{2} / 8$. Denote $f_{1}=f_{0}+\lambda h_{n}$ and $f_{2}=A_{n}\left(f_{1}\right)-f_{1}$. We have

$$
\begin{align*}
\left\|f-f_{1}\right\| & \leqslant\left\|f-f_{0}\right\|+\left\|f_{0}-f_{1}\right\| \leqslant \varepsilon^{2} / 4 \tag{10}\\
\quad\left\|f_{2}\right\| & \leqslant\left\|A_{n}\left(f_{1}\right)-A_{n}\left(f_{0}\right)\right\|+\left\|A_{n}\left(f_{0}\right)-f_{0}\right\|+\left\|f_{0}-f_{1}\right\| \leqslant 3 \varepsilon^{2} / 8 \tag{11}
\end{align*}
$$

by (6) and (7) and

$$
\begin{equation*}
\mu\left\{x \in E: A_{n}\left(f_{1} ; x\right)=B_{n}\left(f_{1} ; x\right)\right\}<\varepsilon \mu E / 2 \tag{12}
\end{equation*}
$$

by (8) and (9). Let us define the finite-dimensional linear $L=\operatorname{Im} A_{n} \oplus$ $\operatorname{Im} B_{n}$ and the linear operator $C: C(E) \rightarrow L: C h=A_{n}\left(f_{2} h\right) \oplus B_{n}\left(f_{2} h\right)$. Applying Lemma 1 (with $\varepsilon / 2$ instead of ε) we obtain the existence of a corresponding function h. Let $g=f_{1}+f_{2} h$ and $F^{\prime}=\{x \in E: h(x)=1\}$; then we have:
(1) $\|f-g\| \leqslant\left\|f-f_{1}\right\|+\left\|f_{1}-g\right\| \leqslant\left\|f-f_{1}\right\|+2\left\|f_{2}\right\| / \varepsilon$ and by (10) and (11) $\|f-g\| \leqslant \varepsilon^{2} / 4+3 \varepsilon / 4<\varepsilon$;
(2) $A_{n} g(x)=A_{n} f_{1}(x)=f_{1}(x)+f_{2}(x)=g(x)$ for $h(x)=1$, i.e., $x \in F^{\prime}$;
(3) $\mu F^{\prime}>(1-\varepsilon / 2) \mu E$;
(4) $A_{n} g=A_{n} f_{1}, B_{n} g=B_{n} f_{1}$, and by (12) $\mu\left\{x \in E: A_{n}(g ; x)=\right.$ $\left.B_{n}(g ; x)\right\}<\varepsilon / 2 \mu E$.

Thus, we get

$$
\begin{aligned}
& \mu\left\{x \in E: g(x)=A_{n}(g ; x) \neq B_{n}(g ; x)\right\} \\
& \quad \geqslant \mu F^{\prime}-\mu\left\{x \in E: A_{n}(g ; x)=B_{n}(g ; x)\right\}>(1-\varepsilon) \mu E,
\end{aligned}
$$

and a required set F can be chosen. This completes the proof of Lemma 2.
Now we are ready to prove the theorem. Using Lemma 2 one can easily construct by induction sequences of positive numbers ε_{k}, positive integers n_{k}, sets $F_{k} \subset E$, and functions $f_{k} \in C(E)$ satisfying for $k=1,2, \ldots$, the following conditions:

$$
\begin{align*}
\mu F_{k} & \geqslant\left(1-\varepsilon_{k}\right) \mu E, \tag{13}\\
A_{n_{k}} f_{k}(x) & =f_{k}(x) \quad \text { for } \quad x \in F_{k}, \tag{14}\\
\delta_{k} & =\inf _{x \in F_{k}}\left|f_{k}(x)-B_{n_{k}} f_{k}(x)\right|>0, \tag{15}\\
\left\|f_{k}-f_{k+1}\right\| & \leqslant \varepsilon_{k+1}, \tag{16}\\
n_{k+1} & >n_{k}, \tag{17}\\
\varepsilon_{k+1} & <\varepsilon_{k} / 2, \tag{18}\\
2 \varepsilon_{k+1} & <\frac{\delta_{k}}{k I_{n_{k}}+1+k I_{n_{k}}\left\|A_{n_{k}}\right\|+\left\|B_{n_{k}}\right\|} . \tag{19}
\end{align*}
$$

It follows from (18) that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \varepsilon_{k}<\infty . \tag{20}
\end{equation*}
$$

Therefore, by (16), the sequence $\left\{f_{k}\right\}$ uniformly converges to a function $f \in C(E)$ and also

$$
\begin{equation*}
\left\|f-f_{k}\right\|<2 \varepsilon_{k+1} \tag{21}
\end{equation*}
$$

Denote

$$
F=\bigcup_{l=1}^{\infty} \bigcap_{k=l}^{\infty} F_{k} ;
$$

then from (20) we get $\mu(E \backslash F)=0$. For almost all points $x \in E$ we have $x \in F$. Then $x \in F_{k}$ for sufficiently large k and we can use (21), (14), and (15) for estimates of deviations $A_{n_{k}} f(x)-f(x)$ and $B_{n_{k}} f(x)-f(x)$. We find

$$
\left|A_{n_{k}} f(x)-f(x)\right| \leqslant 2\left(1+\left\|A_{n_{k}}\right\|\right) \varepsilon_{k+1}
$$

and

$$
\left|B_{n_{k}} f(x)-f(x)\right| \geqslant \delta_{k}-2\left(1+\left\|B_{n_{k}}\right\|\right) \varepsilon_{k+1} .
$$

From the last two inequalities and (19) we obtain

$$
k I_{n_{k}}\left|A_{n_{k}} f(x)-f(x)\right| \leqslant\left|B_{n_{k}} f(x)-f(x)\right| .
$$

Thus,

$$
\lim _{k \rightarrow \infty} I_{n_{k}}\left|A_{n_{k}} f(x)-f(x)\right| /\left|B_{n_{k}} f(x)-f(x)\right|=0
$$

for $x \in F$, and the theorem is proved.

REFERENCES

1. W. Dickmeis, R. J. Nessel, and E. van Wickeren, The divergence almost everywhere of a pointwise comparison of Fejér and Abel-Poisson means, Bull. London Math. Soc. 18 (1986), 606-608.
2. R. Getsadze, On one problem of N. Kirchoff and R. J. Nessel, J. Approx. Theory 80 (1995), 409-422.
3. N. Kirchoff and R. J. Nessel, Divergence almost everywhere of a pointwise comparison of trigonometric convolution processes with their discrete analogues, J. Approx. Theory 70 (1992), 29-38.
4. N. Kirchoff and R. J. Nessel, Convolution processes of Fejér type and the divergence almost everywhere of a pointwise comparison, Acta Math. Hungar. 62 (1993), 97-110.
5. V. K. Leichtweiss, "Konvexe Mengen," VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
6. H. S. Shapiro, "Smoothing and Approximation of Functions," Van Nostrand, New York, 1969.

[^0]: * Supported by RFFI Grant 93-01-00240.

